
0.1 Regulating a fishery through seasonal closure

According to Gordon (1954), seasonal closure in the Canadian Atlantic Coast lobster fishery
led to an increase in the number of lobster traps being used by each fisher. He estimates
that “the same quantity of lobster could be caught with half the present number of traps.”
(134) This is to say that seasonal closure has actually resulted in increased total effort, while
total harvest has remained constant.1 The following model will help us make sense of this
puzzling outcome.

0.1.1 The free access Nash equilibrium

A fishery is subject to a free access by n identical fishers. The fish stock is considered
exceedingly low and the authorities decide to regulate fishing activities by reducing the
length of the fishing season. With a shorter season length, it is reasonable to assume that a
given effort level yields a lower harvest rate, all else equal. For instance, less lobster is caught
if a given number of traps is used for six months instead of a full year. Or one thousand
man-hours of fishing effort does not yield the same harvest if constrained to be applied over
four months instead of one year. Accordingly, we must distinguish between true and effective
effort. Let xi be the true effort of fisher i and ` be the length of the fishing season expressed
in fraction of one year, ` ∈ (0, 1). With a shorter fishing season, the effective effort of each
fisher goes down; it is denoted by ei = α(`)xi, where α′(`) > 0 and α(1) = 1. The unit cost
of true effort is c and the total harvest function is h(E), where E is the total effective effort,
with h′(E) > 0 and h′′(E) < 0. (We abstract from dynamic effects for now.) Let us derive
the Nash equilibrium true effort level for any given season length `.

The problem for one fisher is

max
xi

πi =
h(E)

E
α(`)xi − cxi where E = α(`)

n∑
j=1

xj =
n∑

j=1

ej

Substituting for xi, the problem can be represented as

max
ei

πi =
h(E)

E
ei − c

α(`)
ei. (1)

Note how, once it is expressed in terms of choosing the effective effort, the problem becomes
analogous to that of the standard free access to a resource. From the individual fisher’s
perspective, the sole difference is that a reduction in the fishing season length leads to a
higher cost of fishing effort. Taking the first-order condition for each fisher and assuming a
symmetrical Nash equilibrium, we get

h(EN)

EN
+ eN ∂

∂E

h(EN)

EN
− c

α(`)
= 0, where EN = neN . (2)

This equation characterizes the Nash equilibrium. It can also be expressed in terms of true
equilibrium efforts as follows

h(α(`)XN)

α(`)XN
+ xN ∂

∂X

h(α(`)XN)

α(`)XN
=

c

α(`)
, (3)

1See also Weninger and Waters (2003)? and Homans and Wilen (1997)?.

1



where XN = nxN . If α(`) = 1, we recover the standard free-access Nash equilibrium
condition (see section XX). One effect of reducing the season length ` is thus to increase the
unit cost of x, as a unit tax on effort would do. But α(`) also appears on the LHS of the
equilibrium condition. This was not the case with the tax (see equation XX). Hence, there
are additional effects that make this policy instrument different from a tax. To see how, let
us simplify the analysis and consider the case of an arbitrarily large number of fishers. With
n →∞, the equilibrium is characterized by

h(nα(`)xN)

nα(`)xN
≡ h(neN)

neN
=

c

α(`)
. (4)

We still have full rent dissipation. This is not surprising as the free access to the resource
remains in place even though the season is shorter. With a large number of non-cooperating
fishers, this means that they will still try to scramble for any remaining positive rent, leading
to an equilibrium without rents. The introduction of stock effects yields additional insight.

0.1.2 Introducing stock dynamics in steady-state

Let g(S) be a logistic function that denotes the natural rate of change of the resource and
h(E, S) ≡ ES be the total harvest rate as a function of the effective effort level. In terms
of true total effort, we have h(X,S) = αXS, such that in steady-state, g(S) = αXS or
X = g(S)/αS. This implies that a shorter season length, a larger true effort is called for
in order to maintain the same steady-state harvest rate. This is represented in figure (sol-
graphic-regul-season-length.pdf), where revenue curves pssh(X) and pssh(αX) respectively
denote the total steady-state revenue with respect to true effort for a full season and for a
shortened season (0 < α < 1).

In the absence of season closure and with a low constant marginal cost cL, the rent
dissipation equilibrium at point A yields a total effort level of XN

1 .2 This corresponds to a
biologically inefficient exploitation level as output would increase with a lower effort, due the
small size of the fish stock. For this reason, a regulating authority imposes seasonal closure,
which moves the steady-state equilibrium to point B and results in a higher equilibrium
true effort level accompanied with a higher harvest rate. This surprising outcome is due to
the stock effect. To see this, imagine that the true effort level were to remain at level XN

1 ,
while the season is shorter. As the effective effort drops to αXN

1 , fish stocks are rebuilt,
thus producing a total revenue well above the total cost in steady-state. In open access, the
additional rents are dissipated away with increased real effort up to point B and true effort
level XN

α .
Note that with if the initial marginal cost of effort is high, season closure will produce

the desired result of reducing total effort by moving the equilibrium from point A′ to B′ (see
total cost curve cHX on the graphic). But this is not a very interesting case since the initial
stock size is unlikely to be critically low, so that intervention to rebuild stocks would not be

2Period-by-period rent dissipation will still hold in a dynamic setting (see Brooks et al. (1999)?).
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required in the first place. Making use of implicit differentiation, equations (4) yields

∂X

∂α
R ⇔ hss′(E) R 0. (5)

∂E

∂α
> 0. (6)

When the stock size is smaller than the MSY size, introducing season length actually in-
creases the true effort level. Effective effort, however, will always go down.

A general lesson is that if a regulator imposes controls at a given margin while the free
access to the resource remains in place, users will adjust at other margins and inefficient use
will remain. There may, however, be side-effects on the resource which turn out to be either
positive or negative.

0.1.3 Exercises and extensions

Quadratic steady-state harvest function

Answer the following two questions assuming that n →∞.

a) Assume h(e) = ae− be2. What is the effect of season length on the total true effort level?
On the total effective effort level? On the steady-state resource stock level? On fisher
welfare? Discuss.

Making the proper substitutions, we obtain

eN =
a

b
− c

α(`)b
, (7)

xN =
a

αb
− c

α2b
. (8)

This yields

∂xN

α
=

1

bα2

(
2c

α
− a

)
R 0 ⇔ α Q 2c

α
. (9)

It can be verified that this last condition corresponds to the following

h′(eN) R 0. (10)

Hence, reducing the fishing season length will produce the desired result of reducing the
total fishing effort in steady state only when the stock size is larger than the MSY level,
i.e. when the stock size is relatively large already. Conversely, when the stock size is
smaller than the MSY size, i.e. when h′(e) < 0, reducing the season length actually
increases the true effort level. This means that precisely when the regulator is most likely
to intervene will reducing season length lead to the undesirable outcome of increased true
effort.

3



As for the effective effort level, we can see from (7) that reducing the season length will
always produce the desired lower effective effort level in equilibrium. As a result, the
resource stock level always increases in the steady-state equilibrium, which may have
been the initial objective. But fisher welfare is not improved as the open access situation
remains in place and total rents are dissipated.

b) Is it possible to find a fishing season length that would yield an equilibrium at the maximum
sustainable yield? Explain.

The MSY is obtained when the effective effort is such that h′(e) = 0. This implies that
eMSY = a/2b. Letting eN = eMSY and using expression (7) above, we get α(`) = 2c/a.
Hence, as long as 2c/a ∈ (0, 1), it is possible to set the season length such that the
maximum sustainable yield is attained in equilibrium.

Fixed catch limit

Gordon (1954) also discusses the case example of fixed-catch limits on the Pacific halibut
fishery in Canada established in the early thirties. It led fishermen to invest in “more, larger,
and faster boats in a competitive race for fish.” (133) In one area, the fishing season to catch
the limit dropped from six months in 1933 to twenty-six days in 1952. Propose a model to
analyze the effects of regulation based on fixed-catch limits.
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