EXERCISES AND PROBLEMS SET 7 (Winter 2007)

1. Non-renewable resource exploitation and stock discovery

We wish to compare how a similar increase in the stock of a non-renewable resource can affect its price and extraction paths when it is <u>anticipated</u> versus when it is <u>non-anticipated</u>. Use a four-quadrant graph to analyze this.

- a) In the first case, assume that you are now at time t = 0 and that the stock size is S_0 . The stock is anticipated to increase by amount S_1 at a future specific date, say at date $t = t_0 > 0$. (NB Depending on the relative sizes of S_0 and S_1 , there are two cases to consider.)
- b) In the second case, you are now at date t = 0 and the change occurs at that same future time $t = t_0 > 0$, but it is a total surprise.
- c) Compare the two cases and interpret.

2. A tax on the catch in a steady-state fishery

A fishery is being exploited by a single owner. Total harvesting costs depend on both stock levels and harvesting rate in the following general form: C(S(t), h(t)), with $C_1 < 0, C_2 >$ 0 and $C_{22} > 0$. The unit price of fish is constant and equal to p. The owner's discount rate is r. The fish stock varies with time according to the following differential equation: $\dot{S}(t) = G(S(t)) - h(t)$. The initial fish stock is S_0 .

- a) Solve for the owner's present value maximizing conditions in steady-state. (Use the Maximum Principle in continuous time.)
- b) What happens when $r \to \infty$? Interpret.
- c) Assume that the *social* discount rate is equal to $\rho < \infty$ and that $r = \infty$. How can a tax on the catch reestablish a socially optimal stock size?
- d) Characterize the steady-state for an open access exploitation. Compare with your answer in b).
- e) Characterize the tax rate that would reestablish optimality when the fishery is exploited under open access.
- f) Assume now that h(t) = eE(t)S(t), where E is effort and e is a parameter value related to technology. If the unit cost of effort is c, then total harvesting cost is now: $C(S(t), h(t)) = \frac{c}{eS}h = c(S)h$, with c'(S) < 0. How do your answers in b) and d) compare?